The Mre11-Rad50-Xrs2 Complex Is Required for Yeast DNA Postreplication Repair
نویسندگان
چکیده
Yeast DNA postreplication repair (PRR) bypasses replication-blocking lesions to prevent damage-induced cell death. PRR employs two different mechanisms to bypass damaged DNA, namely translesion synthesis (TLS) and error-free PRR, which are regulated via sequential ubiquitination of proliferating cell nuclear antigen (PCNA). We previously demonstrated that error-free PRR utilizes homologous recombination to facilitate template switching. To our surprise, genes encoding the Mre11-Rad50-Xrs2 (MRX) complex, which are also required for homologous recombination, are epistatic to TLS mutations. Further genetic analyses indicated that two other nucleases involved in double-strand end resection, Sae2 and Exo1, are also variably required for efficient lesion bypass. The involvement of the above genes in TLS and/or error-free PRR could be distinguished by the mutagenesis assay and their differential effects on PCNA ubiquitination. Consistent with the observation that the MRX complex is required for both branches of PRR, the MRX complex was found to physically interact with Rad18 in vivo. In light of the distinct and overlapping activities of the above nucleases in the resection of double-strand breaks, we propose that the interplay between distinct single-strand nucleases dictate the preference between TLS and error-free PRR for lesion bypass.
منابع مشابه
Formation of the yeast Mre11-Rad50-Xrs2 complex is correlated with DNA repair and telomere maintenance.
The yeast Mre11 is a multi-functional protein and is known to form a protein complex with Rad50 and Xrs2. In order to elucidate the relationship between Mre11 complex formation and its mitotic functions, and to determine domain(s) required for Mre11 protein interactions, we performed yeast two-hybrid and functional analyses with respect to Mre11 DNA repair and telomere maintenance. Evidence pre...
متن کاملDifferential suppression of DNA repair deficiencies of Yeast rad50, mre11 and xrs2 mutants by EXO1 and TLC1 (the RNA component of telomerase).
Rad50, Mre11, and Xrs2 form a nuclease complex that functions in both nonhomologous end-joining (NHEJ) and recombinational repair of DNA double-strand breaks (DSBs). A search for highly expressed cDNAs that suppress the DNA repair deficiency of rad50 mutants yielded multiple isolates of two genes: EXO1 and TLC1. Overexpression of EXO1 or TLC1 increased the resistance of rad50, mre11, and xrs2 m...
متن کاملThe Saccharomyces cerevisiae mre11(ts) allele confers a separation of DNA repair and telomere maintenance functions.
The yeast Mre11 protein participates in important cellular functions such as DNA repair and telomere maintenance. Analysis of structure-function relationships of Mre11 has led to identification of several separation-of-function mutations as well as N- and C-terminal domains essential for Mre11 meiotic and mitotic activities. Previous studies have established that there is a strong correlation b...
متن کاملRelationship of DNA degradation by Saccharomyces cerevisiae exonuclease 1 and its stimulation by RPA and Mre11-Rad50-Xrs2 to DNA end resection.
Homologous recombination is a major pathway for repair of DNA double-strand breaks. This repair process is initiated by resection of the 5′-terminated strand at the break site. In yeast, resection is carried out by three nucleolytic complexes: Mre11-Rad50-Xrs2, which functions at the initial step and also stimulates the two processive pathways, Sgs1-Dna2 and Exonuclease 1 (Exo1). Here we invest...
متن کاملThe fission yeast Rad32 (Mre11)-Rad50-Nbs1 complex is required for the S-phase DNA damage checkpoint.
Mre11, Rad50, and Nbs1 form a conserved heterotrimeric complex that is involved in recombination and DNA damage checkpoints. Mutations in this complex disrupt the S-phase DNA damage checkpoint, the checkpoint which slows replication in response to DNA damage, and cause chromosome instability and cancer in humans. However, how these proteins function and specifically where they act in the checkp...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2014